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Avalanche Statistics of Sand Heaps 
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Large-scale computer simulations are presented to investigate the avalanche 
statistics of sandpiles using molecular dynamics. We show that different 
methods of measurement lead to contradictory conclusions, presumably due to 
avalanches not reaching the end of the experimental table. 
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The physics of an evolving sandpile has been of great interest to physicists 
and engineers and much work has been done in this field. One of the most 
popular (or sometimes unpopular)  ideas is the concept of self-organized 
criticality (SOC). I~l It has been argued by many physicists that sandpiles 
can be described by cellular au tomata  in two or three dimensions (e.g., 
ref. 2) and by stochastic cellular au tomata  (e.g., ref. 3) which in simulations 
might show SOC behavior. There are many  effects in nature which are sup- 
posed to reveal SOC, and hence a variety of articles have investigated its 
theory (e.g., ref. 4). When particles are dropped one after the other onto the 
top of a sand heap one observes avalanches. The time intervals between 
successive avalanches and the size distribution of the avalanches have been 
of interest to experimentalists as well as theorists, and there is a con- 
troversy over whether they obey a power law or notJ 5" 6~ 

In an experimental work Jaeger et  al. 17) investigated the avalanche 
sizes of a pile contained in a box with one open side. The material flow 
over the edge "of the box was measured between a pair of capacitor plates. 
From the fluctuation of the capacity they concluded that the sizes of the 
avalanches might no t  be power-law distributed. To determine the size of an 
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Fig. I. Each of the nonspherical particles consists of five spheres, 

avalanche they measure the capacity change, i.e., the mass of the particles 
which fall over the edge of the table. Bretz et al. ~8) measured the avalanche 
distribution by recording the temporal behavior of the inclination of the 
heap's surface. In contrast to ref. 7, results support the hypothesis of the 
power-law distribution. 

We want to present the results of a large-scale computer experiment 
where we recorded the distribution of the sizes of avalanches using both 
methods. We will show that possibly the two measurements Iv's) do not 
contradict, but support each other. 

In a previous paper (9) we showed that in a simulation using two- 
dimensional molecular dynamics of nonspherical particles one can find a 
power-law behavior of the size distribution of the avalanches. Our particles 
k are built up of five spheres which are connected by springs (Fig. 1). 

At rest the inner sphere touches the surrounding spheres of the 
same particle. For details of the forces acting between the spheres of the 
same grain via springs and the forces acting between colliding grains see 
ref. I0. 

Using molecular dynamics, we build up the pile by dropping the par- 
ticles one after the other on the top of the evolving pile. A particle is drop- 
ped when all avalanches and fluctuations caused by the previously released 
grain have faded away, i.e., we wait until the maximum velocity of the par- 
ticles comes very close to zero. Then the inclination of the heap is measured 
by the following procedure: Suppose the shape of the heap of height H 
built up on a surface of width B is close to a triangle. Then its slope is 
given by 

r = arc tan [ H - - - - - -  ~ - - - - - ( k ) -  ( l /M) 5Z~= l m(k'y~k) l ( k )  
(2/M) Zk=lm x J (1) 



Avalanche Statistics of Sand Heaps 1375 

where m (k) and x �91 and ytk~ are the mass and the position, respectively, of the 
kth grain and M is the sum of the masses of all particles M = zN= ~ m I*~. 
Since our heap is close to, but not an ideal triangle we calculate the height H 
using 

H =  2 .f':m,x h(x) dx (2) 
Xmax J0 

where x .... is the x position of the grain which is closest to the end of the 
table. From the fluctuations of the slope according to Eq. ( t ) we can conclude 
the approximate size of the avalanche according to a decrease in the slope: 

B 2 
A ~ ) M = - ~  p(tan O ' - t a n  45) (3) 

where 45' is the slope before the dropping event, B ~  P =  30.7 cm is the 
length of the table, and p = 0.59g. cm-2  denotes the average density of the 
heap. This method for the measurement of the size of an avalanche (indexed 
by A(I)M) is close to the experimental method used by Bretz et alJ 8~ 
Another method, which was used by Jaeger et al. (7) and by Rosendahl et 
al. 16) is to measure the weight of the material which reaches the end of the 
finite table during an avalanche using a balance or a capacitor. They con- 
sidered the weight of material flowing over the border of the table to be the 
size of the avalanche A('-~M. As in the experiment in the molecular 
dynamics simulations, we calculated the mass of the particles which reach 
the end of the table, i.e., x~k)> P. 

Collecting the idle time of all the computers of our department over a 
period of about 1 year, we found enough computer power to perform a 
large-scale molecular dynamics simulation. The heap was built up on a 
rough surface of width P = 30.7 cm ,,~ 96 ( U k ) ) .  The radii rl k~ of the outer 
spheres of the particles k were equally distributed in the interval 
r~i k) e (0.05, 0.11) cm, while the radii of the inner spheres are determined by 

.~k) ( i =  1 ..... 4) where U k~ is the size of the kth the relation riot' = L(k ' / x /~ -  "i 
grain (Fig. 1). In ref. 10, Fig. 10, we show that the relation Uk)/r~ik~=4 
reproduces well the static friction behavior of sandpiles. The average num- 
ber of particles on the heap was Nav= 930. 

Figure 2 shows the time series of the avalanche size from both proce- 
dures, A~]~M and AI2~M. The size distributions of the data shown in Fig. 2 
are drawn in Fig. 3. We find that the distribution of the avalanche sizes 
measured by means of the fluctuations in the slope A(~ )M reveals a typical 
power-law behavior for avalanches smaller than A(J~M < 2 g, while the dis- 
tribution according to the direct measurement of the avalanche sizes A('-)M 
does not show a power-law behavior. We claim that the difference 
illustrated in Fig. 3 comes from the fact that the second method is not able 
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Fig. 2. Series of 450 avalanches. Top: the avalanche size zl ~ ~)M concluded from the fluctuation 
in slope [Eq. (3)]; bottom: the avalanche size ~t2)M calculated from the mass of particles that 
reach the end of the table. The fraction of small avalanches is much higher for the upper figure. 

to account for those avalanches which do not reach the end of the table. 
Obviously the larger the pile, the higher is the fraction of avalanches which 
do not reach the border of the table. This coincides with the observations 
by Jaeger et al., t7) who found a deviation from the power law scaling for 
large systems. They found a sharply peaked avalanche distribution of large, 
system-overspanning avalanches. 
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Fig. 3. The size distribution of the avalanches on a log- log  scale for zl(I)M ( • ) and zl(2)M 
(O).  The sizes are measured in grams. The line shows the function freq ~ ,~(~M-1.85. 
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Fig. 4. The waiting-time distribution of the intervals between two consecutive large 
avalanches. The figure shows the number of pairs of avalanches versus their time interval 
measured in dropping events. The double-peak structure is preserved for different discretiza- 
tion interval sizes. 

For  large avalanches in our simulation both types of measurements 
lead to very similar results, which supports our conclusion. In agreement 
with the experimental observations by Rosendahl et  al., ~61 we find large- 
avalanche tails in the distribution. In the case of large piles, the direct 
measurement of the mass fluctuations, i.e., neglecting the smaller 
avalanches, would lead to similar results as Jaeger et. al. found. 

For  the waiting-time distribution of the large avalanches, i.e., for the 
distribution of the number of dropping events between two consecutive 
large avalanches, surprisingly we find a double peak. Figure 4 shows the 
distribution for five different sizes of the discretization intervals. The 
double-peak structure is found in all five curves; hence we assume that it 
is not an artifact due to the choice of the size of the discretization interval. 
So far we have no explanation for this behavior. 

Although our simulation seems at least not to contradict the concept 
of SOC, we should remark here that there are other serious objections 
against applying the idea of SOC in the case of sandpile avalanches (see, 
e.g., ref. 11 ). 
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